

SDR*ham,* A Software Defined Radio Project Nordic VHF/UHF/SHF Meeting 2007

- Project started in 2004
- Project goals
 - Develop an SDR FE (Front End) hardware
 - Develop SDR PC software
 - Learn SDR technology
 - Learn Digital Signal Processing
 - Use SDR in amateur radio applications where high performance is needed
 - Weak signal reception in crowded HF bands
 - EME (Earth-Moon-Earth) communication in the VHF band
 - To have a plattform, SDR FE and PC, for development of analog and digital modes

First SDR FE running

- A Windows/PC test application with SSB/CW demodulator is developed
- Some initial performance testing is done

- LA9CY, Kjell Syverud
- LA7OU, Stein Erik Ellevseth
- LA8TO, Odd Arild Olsen
- LB8X, Tom Twist
- LA7BO, Halvor Liland

- An introduction to SDRham
- Applied technology and theory
 - Sampling
 - Filter design, time and frequency domain
 - USB, sample streaming
 - Signal Processing on PC
 - MMX and SSE instruction sets in Pentium CPU
 - Demodulation techniques
 - Tools
- Receiver design

The SDR Architecture, HW

The SDR Architecture, Test SW

SDR Test Application User Interface

🖓 SDRham	
<u>File S</u> etup <u>H</u> elp	
Image: style="text-align: center;"> Image: style="text-align: center;"> 1024 Image: style="text-align: center;"> 010.000.000 Image: style="text-align: center;"> 010.000.000 Image: style="text-align: center;"> style="text-align: center;"> 010.000.000 Image: style="text-align: center;"> style="text-align: center;"> style="text-align: center;"> 010.000.000 Image: style="text-align: center;"> style="text-align: center;"> style="text-align: center;"> style="text-align: center;"> 010.000.000 Image: style="text-align: center;"> style="text-align: cente;	IF Gain Mode Connect O Aut O AM Connect O Man O FM Run O NBFM O USB Stop Image: O LSB Man Gain
SDR HW Connected	1.

Ideas of Project

A High-Performance Digital-Transceiver Design, Part 1

Data-converter technology has made tremendous strides in the past several years. Let's take a look at how we can achieve high performance in an almost-all-digital radio design.

Linrad: New Possibilities for the Communications Experimenter, Part 1

Discussion opens with analog versus digital RF-input techniques and attendant performance considerations.

By Leif Åsbrink, SM5BSZ

By James Scarlett, KD7O

The Analog Devices Integrated Circuits

AD6645 14-Bit, 80 MSPS AD Converter

AD6620 Digital Receive Signal Processor

Technology and Tools

Technology

- Direct RF sampling
 - to 200 MHz
- USB
- Digital Signal Processing on PC
 - MMX and SSE instruction set

Tools

- Borland C++ Builder6
 - PC SDR SW
- Keil µVision2
 - EZ USB FX2 8051 code
- Cypress EZ-USB Control Panel
 - USB communication
- Altera Quartus II
 - EPLD
- MathCAD
 - Filter design, analyses and simulation
- Ansoft Harmonica
 - Analog Simulation

ADC Module

Design of KD7O

Analog to Digital Converter, AD6645 14-bit 80 MSPS

FUNCTIONAL BLOCK DIAGRAM

The AD6645 employs a three stage subrange architecture 80 MSPS Guaranteed Sample Rate SNR = 75 dB, f_{IN} 15 MHz @ 80 MSPS SNR = 72 dB, f_{IN} 200 MHz @ 80 MSPS SFDR = 89 dBc, f_{IN} 70 MHz @ 80 MSPS

Subranging ADC

DAT A OUT PUT , N-BIT S = N1 + N2

N-bit Two-Stage Subranging ADC

Missing Codes

SNR = 7...7N + 1...77

(Measured over the Nyquist Bandwidth: DC to $f_s/2$)

Calculated SNR for an 14-bit ADC $SNR=6.02 \cdot 14 + 1.76 = 86 \text{ dB}$ $SNR=6.02 N + 1.76 + 10 \log \frac{f_s}{2 \cdot BW}$ Process Gain

 $f_s = 64$ MHz, BW = 3.2 kHz

$$SNR = 6.02 \cdot 14 + 1.76 + 10 \log \frac{64 \cdot 10^6}{2 \cdot 3.2 \cdot 10^3} = 126$$
 dB

The AD6645 Input Voltage Range is 2.2 V_{p-p} . The voltage for LSB (Least Significant Bit) is then

$$V_{LSB} = \frac{2.2V}{2^{14}} = 134 \cdot 10^{-6}$$
 (134 uV)

The power P in a signal of -110 dBm is found from

$$-110 = 10 \log(\frac{P}{10^{-3}}) \Rightarrow$$
$$P = 10^{-3} \cdot 10^{\frac{-110}{10}} = 1 \cdot 10^{-14}$$

The voltage is then

$$P = \frac{U^2}{R} \Rightarrow U = \sqrt{P \cdot R} = \sqrt{1 \cdot 10^{-14} \cdot 50} = 0.7 \cdot 10^{-6}$$

= 1 uV_{PEAK}

How can the ADC detect voltage levels of one hundred (-40 dB) of its LSB?

Answer: The signal voltage is added to the ADC internal noise voltage, which is more than many LSBs. With a process gain of 40 dB the the signal will appear again.

Sampling, Nyquist Zones

Undersampling and Frequency Translation between Nyquist Zones

The process of sampling a signal outside the first Nyquist zone is often referred to as *undersampling* or *harmonic sampling* A restate of the Nyquist criteria:

A signal must be sampled at a rate equal to or greater than twice its bandwidth in order to preserve all the signal information

Mathematics of Undersampling

A MathCad simulation proves theory

NF is an important parameter in receivers. To calculate a receiver NF one need to know the NF of each stage. NF is normally not specified by ADC manufacturers.

 $NF = 20 \cdot \log(F)$ NF = 35 AD6645 calculated noise figure

A 1:4 impedance transformer makes the 50 ohm antenna input to 200 ohm at the AD6645 input.

The maximum input voltage of the AD6645 is 2.2 $V_{\text{P-P}}$, that is 0.78 $V_{\text{RMS}}.$ The power is then

$$P = 10\log\left(\frac{\frac{U^2}{R}}{10^{-3}}\right) = 10\log\left(\frac{\frac{0.78^2}{200}}{10^{-3}}\right) = 4.8 \text{ dBm}$$

Effect of Dither (MathCAD Simulation)

RSP (Receive Signal processor) Module

The AD6620 decimating receiver is designed to bridge the gap between high-speed ADCs and general purpose DSPs. It has four cascaded signal processing elements: a frequency translator, two fixed coefficient decimating filters and a programmable coefficient decimating filter.

Numeric Controlled Oscillator, NCO

Clk = 16 MHz Phase increment = 1 -> f = 1 MHz Phase increment = 2 -> f = 2 MHz Frequency is phase change pr time interval. A phase change of 2π (360°) in 1 second is equal to a frequency of 1 Hz

$$f = \frac{d\varphi}{dt}$$

NCO_FREQ is interpreted as a 32-bit unsigned integer. NCO_FREQ is calculated by

$$NCO_{FREQ} = 2^{32} \times \operatorname{mod}(\frac{f_{CH}}{f_{SAMP}}, 1)$$

$$f_{\min} = \frac{64 \cdot 10^6}{2^{32}} = 0.015$$

Time and Frequency Domain

Frequency Domain

Fourier transform og Fourier Series transform a signal between the time and frequency domain

$$s(t) = \int_{-\infty}^{\infty} S(f) \cdot e^{j2\pi ft} df$$

$$s(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2 \cdot \pi \cdot nft}$$

$$S(f) = \int_{-\infty}^{\infty} s(t) \cdot e^{-j2\pi ft} dt$$
$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} s(t) \cdot e^{-j2\cdot\pi \cdot nft} dt$$

The ideal filter in the frequency and time domain

Multiplication in the frequency domain is convolution in the time domain

$$y(t) = \int_{-\infty}^{\infty} h(\tau) s(t-\tau) d\tau$$
 The Convolution Integral
$$Y(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau) s(t-\tau) d\tau \cdot e^{-j2\pi \cdot ft} dt$$

Changing variable with u = t - t and replace the integrals gives

$$Y(f) = \int_{-\infty}^{\infty} h(\tau) e^{-j2\pi \cdot f\tau} d\tau \cdot \int_{-\infty}^{\infty} s(u) e^{-j2\pi \cdot fu} du = H(f) S(f)$$

A finite impulse response (FIR) filter is a discrete linear time-invariant system whose output is based on the weighted summation of a finite number of past inputs.

In the discrete domain (a sampled digital data system) the convolution integral changes to a summation

$$y(n) = \sum_{k=1}^{N-1} h_k \cdot s(n-k)$$

Cascaded Integrator Comb Filter, CIC

The CIC filter is a fixed-coefficient, multiplierless, decimating filter. The characteristics are defined by the decimation rate.

$$H(z) = \left(\frac{1 - z^{-RM}}{1 - z^{-1}}\right)^{N}$$

y[n] = y[n-1] + x[n] y[n] = x[n] - x[n-RM]

CIC2 Frequency Response

$$f_{SAMP} = 65 \text{ MHz}, M_{CIC2} = 10$$

BW = 4 kHz -> DR = 127 dB BW = 100 kHz -> DR = 71 dB

The length of the filter kernel limits the transition bandwidth

Where BW is a fraction of sampling frequency

This filter is an FIR (Finite Impulse Response) filter

AD6620 Setup File, ad6620.imp

M _{CIC2}
M _{CIC5}
M _{RCF}
f
CHIP MODE
CLK MULT
FILTER
COEFF

AD6620 Filter Design Software

AD6620 Setup Dialog Box

Setup SDR HW	×
EZ USB File C HEX C OBJ	B Toggle Reset
AD6620 Filter File AD6620 File Filter Coeffesients Initialze Filter	Load AD 6620
Sample Freq (Hz) 64000000	Normal
MCIC2 16 🖨 SCIC2 6 ᆍ	NCO Mode
MCIC5 25 🕈 SCIC5 19 👤	Chin Mode
MRCF 20 🕈 SRCF 4 👤	
Clock Multiplier 🗍	FIR Filter Mode

The dialog box reads parameters from a file or let the user change them

In the SDR*ham* the serial output format of the AD6620 is used to get 24-bit resolution. An EPLD, Altera EPM3064, is used to convert the serial bit stream to the 8-bit parallel FIFO interface of the EZ USB FX2

Why 24-bit when the Input is 14-bit ?

п

A sine wave sampled with 2-bit

A sine wave sampled with 4-bit

A sine wave sampled with 8-bit

-400

The Cypress Semiconductor EZ-USB FX2 (often abbreviated as "FX2") is a single chip USB 2.0 peripheral with an 8051 microcontroller core

Bulk Transfers

Bulk data is *bursty*, traveling in packets of 8, 16, 32 or 64 bytes at full speed or 512 bytes at high speed. Bulk data has guaranteed accuracy, due to an automatic retry mechanism for erroneous data. The host schedules bulk packets when there is available bus time. Bulk transfers are typically used for printer, scanner, or modem data. Bulk data has built-in flow control provided by handshake packets.

Interrupt Transfers

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes at full speed or up to 1024 bytes at high speed. Interrupt endpoints have an associated polling interval that ensures they will be polled (receive an IN token) by the host on a regular basis.

Isochronous Transfers

Isochronous data is time-critical and used to *stream* data like audio and video. An isochronous packet may contain up to 1023 bytes at full speed, or up to 1024 bytes at high speed.

The FX2 Full-Speed Alternate Settings

Alternate Setting	0	1	2	3	
ep0	64	64	64	64	
ep1out	0	64 bulk	64 int	64 int	
ep1in	0	64 bulk	64 int	64 int	
ep2	0	64 bulk out (2x)	64 int out (2x)	64 iso out (2x)	
ep4	0	64 bulk out (2x)	64 bulk out (2x)	64 bulk out (2x)	
ep6	0	64 bulk in (2x)	64 int in (2x)	64 iso in (2x)	
ep8	0	64 bulk in (2x)	64 bulk in (2x)	64 bulk in (2x)	
Note: "0" means "not implemented", "2x" means double buffered.					

From the driver point of view, the endpoints are referenced as pipes

An OUT bulk endpoint is used for control (AD6620 setup)

An IN isosynchronous endpoint is used for sample streaming

Once the Default USB Device enumerates, it downloads firmware and descriptor tables from the host into the FX2's onchip RAM. The FX2 then begins executing the downloaded code, which electrically simulates a physical disconnect/connect from the USB and causes the FX2 to enumerate again as a second device, this time taking on the USB personality defined by the downloaded code and descriptors. This patented secondary enumeration process is called "ReNumeration™."

The FX2 is accessed through Windows API functions and a Cypress supplied driver *ezusb.sys*

The following table shows the function prototype for DeviceIoControl(). The EZ-USB GPD IOCTL reference will use the same function argument names.

BOOL	DeviceIoConti	col(
	HANDLE	hDevice,	// handle to device of interest
	DWORD	dwIoControlCode,	// control code of operation to perform
	LPVOID	lpInBuffer,	<pre>// pointer to buffer to supply input data</pre>
	DWORD	nInBufferSize,	// size of input buffer
	LPVOID	lpOutBuffer,	// pointer to buffer to receive output data
	DWORD	nOutBufferSize,	// size of output buffer
	LPDWORD	lpBytesReturned,	// pointer to variable to receive output
			// byte count
	LPOVERLAPPE	D lpOverlapped	// pointer to overlapped structure for
			// asynchronous operation
);			

The MMX instructions defines a SIMD (Single Instruction Multiple Data) model to handle 64-bit packed integer data. MMX adds the following new features to the Intel IA-32 architecture:

- Eight new 64-bit MMX registers (aliased in th x87 register stack)
- Three new packed data types
 - 64-bit packed byte integers (signed and unsigned)
 - 64-bit packed word integers (signed and unsigned)
 - 64-bit packed double word integers (signed and unsigned)
- New instructions to support the new data types and to handle the MMX state management

MMX Execution Model and Instructions

MMX Instructions

- Data Transfer
- Arithmetic
- Comparison
- Unpacking
- Logical
- Shift
- Empty MMX State Instruction

MMX Convolution Routine

```
void DSP001::MMXConvolute(int *src ptr, int *dest ptr, unsigned int size)
  int dummy [] = \{0, 0\};
  int *end of buffer=&psig buf[(size filter<<1)-2];</pre>
  int *pbuf sig=psig buf;
  int *pbuf filt=pfilt buf;
  int *pbuf signal=psignal buf;
  unsigned int filtersize=size filter;
  asm
              ECX, size
      MOV
      TEST
              ECX, -1
      JΖ
              no convolute
                  //here to perform convolution
      MOV
              EBX, pbuf signal //EBX is pointer to data line
              ESI, src ptr //ESI is pointer to source data
      MOV
              EDI, dest ptr //EDI is pointer to destination data
      MOV
    next conv:
filter loop:
              MM0, QWORD PTR [EBX]
      MOVQ
      PSRAD
              MM0,8
                        //shift sourec to 16-bit
      PMULHW MM0, QWORD PTR [EDI]
      PADDSW MM1, MM0
                       //accumulated vale is in MM1
      CMP
              EBX, end of buffer
      JGE
              new start buffer
              EBX,8
      ADD
      JMP
              next loop
    new start buffer:
      MOV
              EBX, pbuf sig
```


The SSE (Streaming SIMD Extensions) add the following features to the IA-32 architecture

- Eight 128-bit data registers, called XMM registers
- 128-bit packed single-precision floating point data type (four IEEE single-precision floating point values packed into a double quad word)
- Instructions that perform SIMD operations on single-precision floating point values and that extend the SIMD operations that can be performed on integers:
 - 128-bit packed and scalar single-precision floating point instructions that operate on data located in the XMM registers
 - 64-bit SIMD integer instructions that support additional operations on packled integer operands located in MMX registers

The SSE extensions were introduced in the Pentium III processor family

Give me In-Phase (I) and Quadrature (Q) signal components, and you can get everything. The I- and Q-components contain both amplitude and phase information of a received signal. Frequency is found from phase change per time interval.

 $SSB = \cos(\omega \cdot t) \cos(\omega_c \cdot t) \pm \cos(\omega \cdot t + 90^\circ) \cos(\omega_c \cdot t + 90^\circ)$

The phasing method

To obtain a filter with 90° phase shift over many octaves is not so easy in the analog world. This is not a problem in a digital world (FIR filter)

Borland C++Builder6

- Personal Edition, approx. EUR 100
- Keil uVision
 - Free evalution version, 4k byte code maximum
 - www.cypress.com or www.keil.com
- EZ USB Control Panel
 - Free, www.cypress.com
- Quartus II
 - Free WEB edition, www.altera.com
- MathCad, www.mathsoft.com
- Ansoft Harmonica
 - Free student version with limited number of nodes, www.ansoft.com

Borland C++ Builder6

🛱 C++Builder 6 - so	lrsw										_ 8 ×
<u>F</u> ile <u>E</u> dit <u>S</u> earch	<u>V</u> iew <u>P</u> roject <u>R</u> un <u>C</u> on	nponent <u>T</u> ools <u>W</u> indo	w <u>H</u> elp	None>	· B. B.						
D 🚅 - 🔲 I	J 🕾 🛃 🥔	Standard Additional	Win32 Svs	stem [Internet] Dialogs	Vin 3.1 Samol	es ActiveX					
 			A 🔤		.						
			N ,			<u>on</u> s					
Object Inspector	×	50 SDRham								_ 🗆 ×	1
MainForm	TMainForm 🔳	<u>F</u> ile <u>S</u> etup H	elp								
Properties Eve	ents										
Action											
ActiveControl											
Align	alNone										
AlphaBlend	false										
AlphaBlendVal	255										
⊞Anchors	[akLeft,akTop]										
AutoScroll	true										
AutoSize	false										
BiDiMode	bdLeftToRight										
⊞BorderIcons	[biSystemMenu,										
BorderStyle	bsSizeable										
BorderWidth	0										
Caption	SDRham										
ClientHeight	593	· · · · · · · · · · · ·									
ClientWidth	862										
Color	clBtnFace										
	(TSizeConstrain)										
CtI3D	true										
Cursor	crDefault						· · · · · · · · · · · · · · · · · · ·	-IE Gain-	Mode	· · · · · · · · · · · · · · · · · · ·	
DefaultMonitor	dmActiveForm			512		000 000	000 💠		G AM	Connect	
DockSite	false		-								
DragKind	dkDrag			FFT Size			11 🔺 11	: C Man :	O FM	C Run CCCC	
DragMode	dmManual	Y-Dev	X-Dev				· · · · · · · · · · · · · · · · · · ·		O NBFM	· · · · · · · · · · · · · · · · · · ·	
Enabled	true					1Hz	UP/Dwn	: 🔺 :::::	O USB	Stop	
⊞Font	(TFont)			· · · · · · · · · · · · · · · · · · ·					O LSB	•••••••••••••••••••••••••••••••••••••••	
FormStyle	fsNormal			::: 🕒 i 🕎 i	📳 : 🔁 : : :			Man Gain			
Height	639 💌	· · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · ·						
All shown	1.	SDR HW not co	nnected								

Keil uVision2

EZ-USB Control Panel

Image: Set State Set State Set State Set Set Set Set Set Set Set Set Set S	EZ-USB Control Panel - [Ezusb-0]
Get Pipe Info ▼ Seen Device Ezusb-0 Citest Load Setter Conference Get Dev Get Conf Get Pipes Setting Device Anchor Download HOLD PUN Yend Res Req DxA2 Value Dx0000 Anchor Download HOLD PUN Yend Res Req DxA2 Value Dx0000 Anchor Download HOLD PUN Yend Res Pipe Yend Res Packets 128 Size 16 Dif 1 IN Y Hex Bytes B0 47 05 80 00 01 00 Y Boot Trans Pipe Yend Res Packets 128 Size 16 Buffers 2 Frames / Buffer B Buik / Inter Pipe Yend Res Yend	Image: Section of the section of t
Get Dev Get Conf Get Pipes Get String Download ReiLoad EEPROM. UHB Stat HOLD PUN Vend File Req UxA2 Value Dx00000 Index UXB Stat HOLD PUN Iso Trans Pipe Pipe Packets 128 Size 16 Buffers 2 Frames / Buffer 8 Buik /Int Pipe Length 64 Hex Bytes 5 Y BuikLoop Rescripte MontPipe FileTians Pipe Set/Face Interface 0 AltSetting 0 Device Descriptor: 1 Descriptor: 1 Device 0 AltSetting 0 Device Descriptor: 1 Device 0x547 1 1 Device: 0x547 1 1 Device: 0x04 1 None: 0x01 1 1 None: 0x01 1 1 None: 0x01 1 1 None: 0x1 1 1 1 1 1 1 1 1	Get Pipe Info
Yend Reg DxA2 Value Dx0000 mdex/UXDEEF Length 16 Dir 1 IN Hex Bytes B0 47 05 80 00 01 00 Image: UXDEEF iso Trans Pipe Packets 128 Size 16 Buffers 2 Frames / Buffer 8 Bufk /M Pipe Length 64 Hex Bytes 5 Image: Buffers 8 8 BesetPipe #BoottPipe FileTans Pipe SetIFace Interface 0 AllSetting 0 Devrice Descriptorr: b b SetIFace Interface 0 AllSetting 0 DevriceSubClass: 0xff DevriceSubClass: 0xff DevriceSubClass: 0xff DBevriceFrotocol: 0x40 idVendor: 0x2131 DedDevrice: 0x40 idVendor: 0x20 iBrowlawLoope: 0x40 idVendor: 0x2131 DevriceSubClass: 0x1 bMumConfigurations: 0x1 0x1 Image: Subclassing the subclasing the subclassing the subclasing the subclassing th	Get Dev Get Conf Get String Download. <u>Re-Load</u> EEPROM. URB Stat <u>HOLD</u> <u>BUN</u>
Iso Trans Pipe Packets 128 Size 16 Buffers 2 Frames / Buffer 8 Buk / Int Pipe Length 64 Hex Bytes 5 9 BukLoop ResetPipe AboutPipe FileTrans. Pipe Y SetIFace Interface 0 AltSetting 0 Devrice DescriptorType: 1 bcdUSB: 256 bDevriceClass: 0xff bDevriceSubClass: 0xff bbeviceProtocol: 0xff bMaxPacketSize0: 0x40 idVendor: 0x547 idProduct: 0x2131 bcdDevrice: 0x4 iMaufacturer: 0x0 iSerialNumber: 0x0 iSerialNumber: 0x0 bNumConfigurations: 0x1 0x1 0x1 0x1 0x1	Vend Req Req 0×A2 Value 0×0000 Anchor Download Length 16 Dir 1 IN Hex Bytes B0 47 05 80 00 01 00 Image: The second sec
Bulk/Int Pipe V Length 64 Hex Bytes 5 V BulkLoop ResetPipe AborPipe FileTans. Pipe V Set IFace Interface 0 AltSetting 0 Device Descriptor: bLength: 18 bDescriptorType: 1 bdOtfipe	Iso Trans Pipe Packets 128 Size 16 Buffers 2 Frames / Buffer 8
ResetPipe AbortPipe FileTans. Pipe V Set IF ace Interface O AltSetting O Device Descriptor: bLength: 18 bDescriptorType: 1 bcdtSB: 256 bDeviceClass: 0xff bDeviceClass: 0xff bDeviceErotocol: 0xff bDeviceClass: 0x40 idVendor: 0x547 idProduct: 0x2131 bcdDevice: 0x40 iAtSetting iProduct: 0x0 iProduct: 0x2131 bcdDevice: 0x0 iSerialNumber: 0x0 bNumConfigurations: 0x1 0x1 0x1 0x1	Bulk / Int Pipe Length 64 Hex Bytes 5 BulkLoop
Device Descriptor: bLength: 18 bDescriptorType: 1 bodUSB: 256 bDeviceClass: 0xff bDeviceSubClass: 0xff bDeviceFrotocol: 0xff bMaxPacketSize0: 0x40 idVendor: 0x547 idProduct: 0x2131 bodDevice: 0x4 iManufacturer: 0x0 iProduct: 0x0 iSerialNumber: 0x0 bNumConfigurations: 0x1	ResetPipe AbortPipe FileTrans Pipe Set IFace Interface O AltSetting O
	Device Descriptor: bLength: 18 bDescriptorType: 1 bcdUSB: 256 bDeviceClass: 0xff bDeviceProtocol: 0xff bMaxFacketSize0: 0x40 idVendor: 0x547 idProduct: 0x2131 bcdDevice: 0x4 iManufacturer: 0x0 iProduct: 0x0 bNumConfigurations: 0x1

ALTERA Quartus II

MathCad

Ansoft Harmonica

Three important parameters

- MDS (Minimum Discernible Signal)
 - Capability to pick weak signals out of the noise
- DR (Dynamic Range)
 - Capability to read weak signals with other strong ones in the receiver front end pass band
- IIP3 (3rd order Input Intercept Point)
 - Gives information of the receiver two tone DR

MDS

The MDS is defined as the signal level at the receiver input that doubles the output signal, that is 3 dB output increase.

A calculated MDS for a ideal receiver (NF=0) with 3 kHz bandwidth

$$P_n = kTB = 1.38 \cdot 10^{-23} \cdot 290 \cdot 3000 = 1.2 \cdot 10^{-17} (Watt)$$

$$P_n = 10 \cdot \log(\frac{p_n}{0.001}) = 10 \cdot \log(\frac{1.2 \cdot 10^{-17}}{1 \cdot 10^{-3}}) = -139 \, dBm$$

 P_{n} in 1Hz bandwidth is -174 dBm

 $MDS = -174 \, dBm + 10 \cdot \log(B) + NF$

In the 14 MHz band (20 meters) the man made and atmospheric NF is estimated to 22 dB (KD7O). Then the receiver NF needs not to be much better. As a rule of thumb a receiver NF of 6 dB better than the background noise is enough.

For the 14 MHz band an analog front end with some gain is needed. (The NF of the ADC is calculated to 29 dB). To maintain high DR this amplifier needs a high IIP3, which is a design challenge.

In the lower short wave band, 1.8 MHz (160 meter), 3.6 MHz (80 meter) and 7.0 MHz (40 meter) no gain is expected to be used in front of the ADC (to be confirmed by tests).

In the VHF band, where the background noise is low, an analog front end with a Low Noise Amplifier (LNA) is needed.

Why is the two tone dynamic range so important?

Third order distortion products are impossible to remove by filters in the analog front end.

(61)

An amplifier or ADC is not ideal. A transfer function is given by

$$V_{out} = K_0 + K_1 V_{in} + K_2 V_{in}^2 + K_3 V_{in}^3 + \dots = \sum_{0}^{\infty} K_n V_{in}^n$$

 $K_{3}V_{IN}{}^{3}$ is 3rd order term and makes distortion products in the passband. Expanding this term gives:

$$V_{out} = E_3 \left(E_1^3 \sin^3 \omega_1 t + E_2^3 \sin^3 \omega_2 t + 3E_1^2 E_2 \sin^2 \omega_1 t \sin^2 \omega_2 t + 3E_2^2 E_1 \sin^2 \omega_1 t \sin^2 \omega_2 t \right)$$

Expanding the last term gives:

 $\omega = 2 \cdot \pi \cdot f$

$$V_{out}' = \frac{3E_1^2 E_2 K_3}{2} \left\{ \sin \omega_2 t - \frac{1}{2} \left[\sin(2\omega_1 + \omega_2) t - \sin(2\omega_1 - \omega_2) t \right] \right\}$$

The intercept point is a figure of merit that is commonly used to describe the IMD (Inter Modulation Distortion) performance of an individual stage or a complete system

In the MF and low HF bands extreme strong signals may appear. Remember from old days, the circuit below works.

A signal of S9 (defined to –73 dBm) +40 dB has a signal voltage given by

$$-33 = 10 \log\left(\frac{P}{10^{-3}}\right)$$
$$P = 10^{-3} 10^{\frac{-33}{10}} = 5 \cdot 10^{-6}$$
$$U = \sqrt{PR} = \sqrt{5 \cdot 10^{-6} \cdot 50} = 16 \cdot 10^{-3}$$

A MathCad worksheet is developed to analyse receiver NF and IIP3

A Receiver Example

NF = 22.1 dB $IIP_3 = 34.8 \text{ dBm}$

Performance Tests

Test Procedures Manual

by Michael Tracy, KC1SX, ARRL Test Engineer and Mike Gruber, W1MG, ARRL EMC/RFI Engineer

Manufacturer's Specifications	Measured in ARRL Lab
Frequency coverage: Receive, 0.025-260 MHz.	Receive, as specified. ¹
Modes of operation: AM, FM, WFM, SSB, DSB, CW. ²	As specified.
Power requirements: 0.2 A (max), 12 V dc.	0.39 A, tested at 12 V dc.
CW/SSB sensitivity: MDS –125 dBm at 500 Hz bandwidth, attenuator set to –10 dB and IF gain at +12 dB.	Noise floor (MDS), estimate: 14 MHz, 500 Hz_bandwidth, -125 dBm. ³
AM sensitivity: Not specified.	For 10 dB S+N/N: 14 MHz, 2.1 μV.
FM sensitivity: Not specified.	For 12 dB SINAD: 14 MHz, 0.9 μV.
Blocking dynamic range: Not specified.	14 MHz, ADC overload, 110 dB.4
Two-tone, third-order IMD dynamic range: Not specified.	20 kHz spacing: 14 MHz, 34 dB.
Third-order intercept: Not specified.	14 MHz, –15 dBm to +29 dBm. ⁵
Second-order intercept: Not specified.	14 MHz, +62 dBm.
Size (height, width, depth): 1.5"×5.5"×6.5"; weight,	1.2 pounds.

All dynamic range measurements were taken using the ARRL Lab standard spacing of 20 kHz. Third-order intercept points were determined using S5 reference.

 $MDS = -174 \, dBm + 10 \cdot \log(B) + NF$

Calculated MDS

 $MDS = -174 \, dBm + 10 \cdot \log(3000) + 29 = -110 \, dBm$

Measured MDS about as the calculated one

Some unexpected results seen in two tone dynamic range measurements. Tones at frequencies that say they are third order products, but their amplitudes do not follow the cube law.

A series of articles are and will be published in the NRRL (Norwegain Radio Relay League) bulletin AMATØR RADIO to promote SDR technology among Norwegian radio amateurs.

